按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
当它穿过巨大的黑暗星云时,便和密集的陨石颗粒、尘埃质点相遇,它便开
始用引力把大部分物质捕获过来,其中一部分与它结合;而另一些按力学的
规律,聚集起来围绕着它运转,及至走出黑暗星云,这时这个旅行者不再是
一个孤星了。它在运行中不断吸收宇宙中陨体和尘埃团,由于数不清的尘埃
和陨石质点相互碰撞,于是便使尘埃和陨石质点相互焊接起来,大的吸小的,
体积逐渐增大,最后形成几个庞大行星。行星在发展中又以同样方式捕获物
质,形成卫星。
以上仅介绍三种关于地球起源的学说,一般认为前苏联学者施密特的假
说(陨石论)是较为进步的,也较为符合太阳系的发展。根据这一学说,地
球在天文期大约有两个阶段:
(1)行星萌芽阶段:即星际物质(尘埃,硕体)围绕太阳相互碰撞,开
始形成地球的时期。
(2)行星逐渐形成阶段:在这一阶段中,地球形体基本形成,重力作用
相当显著,地壳外部空间保持着原始大气(CH·NH4,H2O,CO2,等)。由于
放射性蜕变释热,内部温度产生分异,重的物质向地心集中,又因为地球物
质不均匀分布,引起地球外部轮廓及结构发生变化,亦即地壳运动形成,伴
随灼热融浆溢出,形成岩侵入活动和火山喷发活动。
以上便是地球演化较新的观点。上述从第二阶段起,地球发展由天文期
进入到地质时期。
地球的年龄
地球有多大岁数?从人类的老祖先起,人们就一直在苦苦思索着这个问
题。
玛雅人把公元前 3114 年 8 月 13 日奉为“创世日”;犹太教说“创世”
是在公元前 3760 年;英国圣公会的一个大主教推算“创世”时间是公元前
4004 年 10 月里的一个星期日;希腊正教会的神学家把“创世日”提前到公
元前 5508 年。著名的科学家牛顿则根据《圣经》推算地球有 6000 多岁。而
我们民族的想象更大胆,在古老的神话故事“盘古开天地”中传说,宇宙初
始犹如一个大鸡蛋,盘古在黑暗混沌的蛋中睡了 18000 年,一觉醒来,用斧
劈开天地,又过了 18000 年,天地形成。即便如此,离地球的实际年龄 46
亿年仍是差之甚远。
人们是用什么科学方法推算地球年龄的呢?那就是天然计时器。
最初,人们把海洋中积累的盐分作为天然计时器。认为海中的盐来自大
陆的河流,便用每年全球河流带入海中的盐分的数量,去除海中盐分的总量,
算出现在海水盐分总量共积累了多少年,就是地球的年龄。结果得数是 1 亿
年。为什么与地球实际年龄相差 45 亿年呢?一是没考虑到地球的形成远在海
洋出现之前;二是河流带入海洋的盐分并非年年相等;三是海洋中盐分也常
被海水冲上岸。种种因素都造成这种计时器失真。
人们又在海洋中找到另一种计时器——海洋沉积物。据估计,每 3000~
10000 年,可以造成 1 米厚的沉积岩。地球上的沉积岩最厚的地方约 100 公
里,由此推算,地球年龄约在 3—10 亿年。这种方法也忽略了在有这种沉积
作用之前地球早已形成。所以,结果还是不正确。
几经波折,人们终于找到一种稳定可靠的天然计时器——地球内放射性
元素和它蜕变生成的同位素。放射性元素裂变时,不受外界条件变化的影响。
如原子量为 238 的放射性元素——铀,每经 45 亿年左右的裂变,就会变掉原
来质量的一半,蜕变成铅和氧。科学家根据岩石中现存的铀量和铅量,算出
岩石的年龄。地壳是岩石组成的,于是又可得知地壳的年龄,大约是 30 多亿
年,加上地壳形成前地球所经历的一段熔融状态时期,地球的年龄约 46 亿
岁。
地球的幼年时代——太古代时期
经过了天文期以后,地球便正式成为太阳系的成员。大约又经过 22 亿
年,地球发展便进入到地质时期——太古代。这段从 46 亿年~38 亿年的地
质时期有哪些特点?
(1)薄而活动的原始地壳:根据资料分析,原始地壳的部分可能更接近
于上地幔。硅铝质和硅镁质尚未进行较完全的分异,因此太古代时期的地壳
是很薄的,也没有现在这样坚固复杂。由于地球内部放射性物质衰变反映较
为强烈,地壳深处的融熔岩浆,不时从地壳深处,沿断裂涌出,形成岩浆岩
和火山喷发。当时到处可见火山喷发的壮观景象。因此我们现在从太古代地
层中,普遍可见火山岩系。
(2)深浅多变的广阔海洋中散布少数孤岛:当时地球的表面,还是海洋
占有绝对优势,陆地面积相对较少,海洋中散布着孤零的海岛,地壳处于十
分活跃状态,海洋也因强烈的升降运动,而变得深浅多变。陆地上也有多次
岩浆喷发和侵入,使上面局部地区固结硬化,使地壳慢慢向稳定方向发展,
因此太古代晚期形成了稳定基底地块——“陆核”。陆核出现,标志地球有
了真正的地壳。
(3)富有 CO2,缺少氧气的水体和大气圈:太古代地球表面,虽然已经
形成了岩石圈、水圈和大气圈。但那时的地壳表面,大部分被海水覆盖,由
于大量火山喷发,放出大量的 CO2,同时又没有植物进行光合作用,海水和
大气中含有大量的 CO2,而缺少氧气。大气中的 CO2随着降水,又进入到海洋,
因此海洋中 HCO3 浓度增大。岩浆活动和火山喷发的同时,带来大量的铁质,
…
有可能被具有较强的溶解能力的降水和地表水溶解后带入海洋。含 HCO3 高浓
…
度海水同时具有较大的溶解能力和搬运能力,因此可将低价铁源源不断地搬
运至深海区,这就是为什么太古代铁矿石占世界总储量 60%,矿石质量好,
并且在深海中也能富集成矿的原因。
(4)太古代的地层:太古代的地层,都是一些经过变质的岩石,例如片
麻岩、变粒岩、混合岩等深变质的岩石。我国太古代地层只分布在秦岭、淮
河以北地区。出产鞍山式铁矿的鞍山、吕梁山、泰山、太行山等地均有太古
代地层。
地球的少年时代——元古代时期
地球发展从 26~6 亿年,这段经历了 20 亿年的悠久历史,称为元古代。
在这漫长的时期,地球上许多事物从无到有,就像是一个人的少年时代,长
成了初步的轮廓。
太古代末期的一次地壳运动,在我国称为泰山运动、鞍山运动或阜平运
动。太古代形成的陆核,到元古代时进一步扩大,稳定性增强,形成规模较
大的原地台,后又经过几次地壳运动,原地台发展为古地台,地壳发展也由
单层结构发展为双层结构。所谓双层结构,即是有结晶基底和沉积盖层,在
世界范围内出现八大地台与九大地槽对立的局面。
这时海洋中,已经出现了丰富繁多的藻类,由于这些布满海洋的藻类植
物的光合作用,吸收大量 CO2 放出氧气,因此这时海洋和大气中有较多的游
氧存在,同时 CO2也相对减少,为生物发展准备了物质条件。
元古代末期,我国有一套地层名词,称为震旦系,指的是 8~6 亿年这段
时期。这是 1924 年李四光先生在长江三峡地区所建立的地层系说。“震旦”
是中国的古称(这套地层名称目前尚未在国际上采用)。在震旦纪的后期,
有一次世界性的大冰期。我国大部分地区均有分布。冰期是指:较大范围内
气温下降,雪线降低(一般雪线在 5000 米海拔高度左右),冰原扩大(例如
震旦冰期时,长江三峡,贵州、湖南、江西等省均有分布)。震旦纪的磷矿、
锰矿都是我国重要的含矿层位。例如开阳磷矿、浏阳磷矿、襄阳磷矿、湘坛
锰矿等,都产于这一时代。
地球的青年时代——古生代时期
古生代大约是 6~2.3 亿年,经历 3.7 亿年的历史。这比起太古代和元古
代来,时间不算很长,但从地球的发展来看,却是一个重要的时期,这犹如
人生的青年时代。根据发展可分早、晚两个阶段:
早古生代划分三个纪:寒武纪是根据英国威尔士西部的寒武山而得名;
奥陶纪是英国威尔士的一个民族的名称;志留纪是威尔士民族居住地。
晚古生代也划分三个纪:早、晚古生代之间有一个地壳运动,称为加里
东运动。海西运动结束了古生代的历史。泥盆纪是根据英国西南的德文郡命
名,日译为泥盆,我国沿用至今。石炭纪,因盛产煤层而得名,石炭是煤的
旧时称呼。二迭纪首先研究地点在乌拉尔山西坡——彼尔姆,因这套地层明
显具有上、下两部分,日译为二迭纪,也为我国采用。
该时期地壳发展日趋稳定,加里东运动以后,世界绝大部分地槽回返褶
皱,古生代末期海西运动后,世界范围内仅剩下两在地槽与两在古陆对立形
势,地球在这时的南北分异较为明显。古地理发展的海陆配置,这时也发生
较大变化,初步建立了现时地貌轮廓。生物的演替,经过了几次飞跃,植物
与动物都先后征服了大陆,高等生物发育繁衍。该期主要地质事件有:
(1)从海洋占绝对优势到陆地面积不断扩大。
前古生代,地球上出现不少古陆,但多为一些地槽海所分隔,在元古代
褶皱回返的地槽,到古生代时又重新下陷,形成广阔的地台浅海,因此早古
生代时,地球仍然是汪洋泽土,海洋占有绝对优势。早古生代,特别是志留
纪末期的地壳运动,称为加里东运动。这次运动后,加里东地槽全部回返褶
皱,另一些地槽也部分发生褶皱回返,如蒙古地槽北缘的阿尔泰——萨彦岭
地区;阿马拉契亚地槽的北段和南段的一部分;塔斯马尼亚地槽的南段等。
地槽褶皱回返转化为地台以后,由于活动区转化为稳定区,不但大地构造性
质发生变化,而且隆起上升,由海洋成为陆地,所以加里东运动后,世界陆
地面积便不断扩大了。
(2)南升北降地壳发展形势到北方大陆联合南方大陆开始解体。
经过了加里东运动以后,一些地槽回返褶皱上升为陆地。但到了晚古生
代,有些地区又开始下沉,成为地台浅海,因此世界总的形势仍然是南升北
降,南方为大致连在一起的冈瓦纳古陆;北方除加拿大与欧洲连起来以外,
其余地区仍为地槽海与地台浅海所分割。但是到了晚古生代后期,由于海西
运动,世界大部分地槽回返上升,世界范围内只有横亘东西的古地中海地槽
和环太平洋地槽还是海洋外,其余均隆起为陆地,于是北方古陆联合为一体,
称为劳亚古陆。被古地中海所隔的南方冈瓦纳古陆,却开始解体,印非之间
被海水所侵成为中生代大陆全面漂移所发生的前奏。
(3)地壳发展由活动趋向稳定,形成两在地槽与南北古陆对立形势。
发生在古生代,尤其是在二迭纪所发生的海西(华力西)运动,其影响
要远比加里东运动大得多。通过这次运动,世界绝大多数地槽全部回返上升。
如西欧地槽、乌拉尔地槽、阿巴拉契亚地槽、塔斯马尼亚地槽等均转化为地
台。上述地槽约有大部分位于北半球,因此经过海西运动后,世界范围内地
壳发展日趋稳定,出现许多年轻地台,开始了两在地槽与两大古陆的对立形
势,结束了地槽占优势的历史。
(4)北方发育广大煤田,南方冰雪晶莹。
海西阶段,地壳运动频繁,海槽相继隆起,陆地面积不断扩大,陆地森
林繁茂,尤其是沼泽地带,更适合一些进化不很完全的植物生长,再加上石
炭——二迭纪气候湿润,因 此植物大量繁衍,那时的北半球呈现出绿树成荫,
森林繁茂的景观。又因地壳运动频繁,海陆多变,陆地长好的植物,常为海
水覆盖,不久又上升为陆地,继续生衍森林,这种环境,恰为成煤创造了良
好条件,因此,石炭、二迭纪是北半球最主要的成煤时期。
晚古生代的冈瓦纳古陆,虽然在印非之间下沉,海水内侵,却仍高高隆
起,出现自震旦冰期以来的又一次大冰期——石炭——二迭冰期。冰川活动
持续 5000 万年,冰盖面积仅巴西境内就超过 400 万平公里。这次冰期正好位
于当时南极周围,冰川中心厚,呈放射状向四周围扩散,应属极地大陆冰盖
类型。这次冰积物现在的分布位置,恰在非洲南部,印度半岛,南美的东缘,
如果将这些大陆拼合,便恢复了大陆漂移前的状况,为大陆漂移说提供了有
力的证据。
(5)中国地壳处于北升南降,北方稳定南方活跃的发展形势。
元古代中国北方形成的古陆,到早古生代仍在不断扩大,中奥陶纪以后,
华北整体上升,形成华北陆台,并与西部塔里木古陆,东北、朝鲜连成一片
陆地,称为中朝陆台。
南方受加里东运动的影响,陆地面积也在不断扩大,志留纪末,是加里
东构造阶段最剧烈的时期,南方大部分为广西运动。这次运动使湘、桂、赣
边的南岭地区上升,位于江南古陆与康滇古陆之间的上杨子海上升形成上杨
子古陆,并与江南古陆、康滇古陆联成陆地。这时江浙一带的华夏海岛,也
成为华夏古陆。加里东运动后,我国西部的天山、昆仑山、祁连山、秦岭、
大小兴安岭及喜马拉雅地区仍处于活动海槽。中国地壳北升南降的形势,早
古生代就已形成。
早元古代我国北方形成的阿拉善古陆、晋陕古陆、胶东古陆,在早古生
代初期仍下沉为地台浅海、至中奥陶纪后,才与华北大陆整体上升。以上说
明早古生代整个北方多处于稳定的地台阶段,沉积了稳定的地台浅海沉积,
以石灰岩为主,岩层厚度多在数十米以内,而华南则沉积了厚度较大的碎屑
岩系,反映了地壳运动较为活跃的特点。因此,早古生代中国地壳发展显示
了北方稳定南方活跃的特点。
晚古生代中国与世界一样,陆地面积进一步扩大,北升南降,北方稳定
南方活跃的形势空前发展,中国初步奠定了现时地貌轮廓。
在华北、东北南中地区,从晚奥陶纪就已上升为陆地以来,沉积间断了
一亿数千万年之久,到了中石炭纪,地壳才发生沉降,出现多次短暂的海侵,
这种时海、时陆的海陆交互作用,最有利于成煤。因此华北煤田,主要形成
于中、上石炭纪及早二迭纪,如本溪组、太原组、山西组等这些古生代的地
层中,均广泛分布煤田。至晚二迭纪时,又全部隆起成陆,沉积了陆相地层,
一直延续至今,这样华北及东北南部便结束了海侵历史。新生代虽然沿海有
几次海侵,但与过去相比,规模小、时间短,是微不足道的。
在华南,早古生代末的广西运动(加里东)对该区的影响:很多地区在
早泥盆纪上升为陆地,但到中晚泥盆纪时,一些地区复又被海水覆盖。当晚
二迭纪的北方,已是一片陆地之时,而南方的半壁河山,仍在海洋之中。由
于地壳活跃,火山喷发,流出的火山岩——峨眉玄武岩散布在大半个西南地
区。由于海陆交替频繁,有利煤田形成。
在中国北部、西北部,原来分布好几条大地槽,沉积了厚至一二万米碎
屑岩和火山岩。由于受晚古生代末海西运动的影响,天山、昆仑、祁连、秦
岭、阿尔泰、蒙古——兴安岭等地槽,都相继褶皱隆起。
上述我国经过晚古生代海西运动后,华北、西北、东北以及华南部分,
已连成广阔的大陆,我国大陆只有西藏、西南和华南部分地区及东北乌苏里
江口等地区有海水存在。所以说,晚古生代,或者海西构造阶段,是海洋向
陆地转化的重大变革时期,也是中国出现大陆占优势的时代。同时经过了海
西运动后,地势起伏,分异显著,山盆相间的景观,也开始出现。山盆的出
现阻隔了气流自由流通,同时陆地增多,气候由湿润而转为干燥。这一方面
使生物界受到一次严峻考验,另一方面也促进了生物的演化,为中生代生物
大飞跃,提供了条件。
从上述整个古生代地壳发展来看,仍处于明显南北分异:北升南降或南
海北陆;北方稳定,南方活跃的发展总形势。
(6)古生代中国的矿产资源。
古生代是世界、也是我国的重要成矿期。
铁矿:我国西北祁连山寒武纪变质岩中,与火山岩有关的“镜铁山式”
铁矿;华北中奥陶纪石灰侵蚀面之上“山西式”铁矿等,均具有工业价值。
磷矿:产于寒武纪的“昆阳式”矿磷是一种较丰富的磷矿床。分布在云
南,四川、湘西等地。
锰矿:是我国又一个含锰地层,如广西的“桂平式”矿体属于上泥盆纪
地层中。湖南、广西、江西、皖南等省中下二迭纪顶部有一套岩层称为当冲
组的,是重要属锰层位。
铝土矿:华北平原中奥陶纪侵蚀面之上的 G 层铝土层,具有重要价值。
煤矿:石炭—二迭纪是我国主要成煤时代,北方产在石炭纪及早二迭纪
地层中,南方则主要产在晚二迭纪地层中。北方主要产煤地层有本溪组、太
原组、山西组,如开滦、淮南、平顶山、淄博、本溪、焦作、太原、大同等
煤田。南方主要产煤地层有石炭纪浏水组,晚二迭纪龙法组(乐平、斗岭、
梁山为同一时代),如洪山殿、牛马司、乐平、斗岭山等煤矿。
地球的壮年时代——中生代时期
地球发展 2.3~0.7 亿年,称为中生代。从海西运动开始,燕山运动结束。
三迭纪称为印支期(印支构造旋回),发生侏罗、白垩纪的称太平洋期或旧
阿尔卑斯期(我国称燕山期)。
海西运动后,世界许多地区,因海槽回返隆起,地壳发展,只留下横亘
东西的古地中海地槽和围绕古陆边缘的环太平洋地槽,北方地台由分而合,
南方地台由合而离,大陆全面飘移。经过晚白垩纪海侵(中生代后的最大海
侵)后,由于燕山运动(又称太平洋或旧阿