按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
胁话虻サ幕啤5部赡苷庵止丶淌褂昧艘恍┨厥獾纳窬呗裕颐撬茏龅降闹挥忻芮凶⑹又种钟邢M募O蟆>踔⒉蛔芤笤诹礁龌蚨喔鲅≡裰凶鞒鼍龆ǎㄈ缤茨诳耍∟ecker)立方体),这便问题变得复杂化。在其他情况下,在不同来源的信息间达成妥协或许更为有效,例如利用不同的深度线索判断视野中一个物体的距离。反之,在判断一个物体是否在另一个物体的前面并部分遮挡了它时,决策是必不可少的。
迄今为止我们寻找觉知神经元可依赖的线索相当少,虽然它也指出了一些有希望的方向。我们是否还有更多可循的途径呢?研究短时记忆的神经机制能否使我们获得关于视觉觉知的一些有用的东西呢?事实上似乎可以肯定没有短时记忆我们便不会有意识,但它应该短到何种程度,它的神经机制又是什么呢?
回想一下,记忆有两种主要类型。当你主动回忆某件事情时,必定在你的脑中某些地方有神经元发放来表达这个记忆。然而。你能记忆许多事情,诸如自由女神像,或是你的生日,但在某一时刻你并不在回忆它们,一般情况下,这种潜在的记忆并不需要相关的神经发放。在贮存记忆时,许多突触连接的强度(以及其他参数)被改变了,使得在给定合适的线索后,所需要的神经活动能被重新生成。这样记忆就贮存在脑中了。
活动回忆和潜在记忆,(这两种记忆形式中)哪一种参与了我们所感兴趣的极短时记忆呢?比较可能的是活动形式的记忆,即,你对一个目标或一个事件的立刻的记忆很可能是以神经的主动发放为基础的。这又是怎样发生的呢?我认为至少有两种可能的方式。
由于神经元具有的某些内在特性,如它的许多离子通道的特点,一旦它被激发之后,可能会持续发放。这种发放会持续一段时间后消退,或者该神经元在接受到某些使它停止发放的外界信号之前一直发放。而第二种机制则有很大差别,它不仅涉及神经元本身,还与其他神经元的连接方式有关。可能存在一些“回响回路”,即由神经元组成的一个闭环,环上的每个神经无要使下一个神经元兴奋,并保持这种活动性不断地循环。这两种机制都可能出现,它们并不互相排斥。
此外,是否可能具有某些潜在形式的短时记忆呢?这将意味着参与的神经元开始受到刺激而发放,继而停止发放:但如果有一个足够强的线索唤醒潜在记忆而成为活动记忆,这些神经元会迅速再度开始发放。但是,除非第一轮的发放在系统中留下了某些痕迹,否则这又怎能发生呢?或许,有关的突触强度(或其他神经元参数)能瞬间改变,可以在短时间内体现这种短暂的潜在记忆?事实上,是否有实验证据表明存在这种突触的瞬间改变呢?附带提一下,克里斯托夫·冯·德·马尔斯博格(Cristoph von der Malsburg)在前面提到的一篇相当难以理解的理论文章中曾提出这种变化。
克里斯托夫有所不知,此前已有一些关于瞬间突触改变的实验证据。它们最早是在50年代被发现的,位于神经和肌肉结合的地方(即激发肌肉的神经与该肌肉接触的地方),离脑很远。不久以后,在海马也发现了类似的瞬间突触改变(综述见参考文献6)。当轴突脉冲到达一个突触时,它几乎同时改变了该突触,以使该突触强度增加。一个快速脉冲序列可产生一个较大的增长。这种突触强度的增加随后以一种复杂的方式衰减,有些较快,约50毫秒;而慢者衰减时间在几分之一秒到一分钟左右。这正是短时记忆所涉及的时间。还有一些证据预示这也出现在新皮层的突触上。看来这主要是由突触的输入一侧(突触前侧)的改变引起的,并可能牵涉到附近的钙离子,以及突触结合处附近的突触囊泡的运动。①无论是何原因,几乎可以肯定它是存在的。其大小是可察觉到的。
遗憾的是,现在关于这些瞬间改变的工作极少,这主要是由于突触强度的长时程改变(一个当前很热门的话题)更容易研究。大多数神经网络的理论工作也没有考虑这种情况。因此我们处于很奇怪的境地:一种对意识(特别是视觉觉知)可能是十分重要的现象,同时被实验学家和理论学者忽略了。
或许这种突触权重的瞬间改变对短暂维持回响回路也是重要的。有关突触强度的增加有助于回路保持其回响发放。
如何防止这种持续的发放过度传播井影响其他回路,这个问题更困难。脑中有大量的复杂回路,因此如果回响回路确实存在的话,要限定它的准确位置几乎是不可能的。这种类型的回响(与活动的短时记忆有关)是否可能仅出现在一个或少数特殊的位置呢?是否有迹象表明这种回路在构建时与附近具有相同形式的回路多少有些隔离,从而使记忆不会以一种无控制的方式传播呢?
有一条回路被认为可能参与了极短时记忆。它从丘脑投射到皮层第6层的一类锥体细胞,而这些细胞又有信号返回丘脑的同样部位。这些丘脑神经元和皮层神经元都只有极少的向侧边伸展的轴突侧枝,这样它们可能极少与其近邻有相互作用。 这使它们具有刚才提到的部分隔离性质。
对通路的研究主要集中在皮层V1 区及其到侧膝体的连接。其中从侧膝体到第6层的锥体细胞的前向通路,看上去很弱。回传通路从第6层到侧膝体,具有极大量的轴突,可能是从侧膝体到第4层这一主要的前向连接的5至10倍。这本身很令人吃惊,特别是很难发现它们具有什么功能。然而,有关这一通路的大多数实验是在动物被麻醉情况下进行的;此时极短时记忆可能很弱甚至不存在,因而动物是无意识的。利文斯通和休伯在数页前提到的文章中,指出他们发现侧膝体神经元的活动在慢波睡眠时降低了。这可能产生影响。虽然信号能从侧膝体传到皮层V1 区(如他们发现的那样),但这些信号不够大,无法维持任何回响活动。现在已经知道有来自脑干的通路可以在慢波睡眠期改变侧膝体的活动(同时,通过延伸也可改变丘脑其他部分的活动)。
那么可以假设这些第6层的神经元与意识的一个关键因素——维持体现极短胼记忆的回响回路——紧 密相关。这与早期的一般观点是一致的,即主要是皮层较低层次的活动一般与意识有关,特别是与视觉觉知有关。
是否可能存在与所有皮层区域关联的这种回响回路呢?换句话说,是否所有的皮层区域都在第6层具有锥体细胞投射到丘脑的某些部位并从那里向回投射到同样那些第6层的锥体细胞呢?很遗憾,我们对此尚不完全清楚。或许只有感觉处理(它们具有可察觉的第4层)的低层及中间层次具有这种短时记忆形式所需要的第6层的回响回路。这也是杰肯道夫提出的有意识的觉知所需要的。或许一个到第4层的较强的输入能使第6层的回响回路激起更大的活力。如果所有这些都被证明是真的,这把脑结构和杰肯道夫的假设有意义地联系在一起。这种可能性令人振奋。
让我们先把这些推测放到一边。是否有证据表明神经元的持续发放与短点记忆的某些形式有关联呢?在前人工作的基础上,那鲁大学的帕特丽夏·戈德曼… 拉基克(Patricia Goldman一Rakic)和她的同事们做了这样的实验。他们训练一只猴子凝视电视屏幕中央的一个点,同时在屏幕其他地方随机地呈现一个目标刺激。当目标不再呈现,经过一段延迟后,要求猴子把眼睛移到刚才目标所在的位置。实验者研究了动物脑前额叶区视觉神经元的反应。通常当目标在屏幕的一个特定地方呈现时,有一个特定的神经元会对它作出响应,而其他的神经元则会对屏上不同地方的目标作出响应。引人注目的是,这种神经元通常在刺激被撤掉后许多秒仍能维持发放,直到猴子做出反应。此外,如果这种活动不再保持下去(这偶尔也会发生),猴子很可能会出错误。简而言之,看来这些神经元像是对应视觉特定的空间位置的工作记忆系统的一部分。①或许在脑中其他地方还有这种系统对应于其他类型的工作记忆。这样我们至少有一个例子是神经元的持续发放参与了短时记忆,②虽然其他情况下的证据还有怀疑。
注意到这是一个单一的任务,因此猴子可能在延迟中在脑中重复这个任务,如果猴子必须执行两种迎然不同的任务的话,神经元的活动情况又会如何,尚不得而知。我们也不了解维持这种持续发放的神经机制。就像对注意的研究一样,我们可以说对短时记忆的神经机制的研究已经开始,但要揭示其奥秘还需大量的实验工作。
①维弗雷多·帕雷托( 1848一1923),意大利经济学家和社会学家,他在华莱士之后将数学应用于经济学,他的关于社会的精英理论对后来的墨索里尼的法西斯党有很大影响。——译者注
①这篇文章是他在休假时写的,并不太为人所知。克里斯托弗。 科赫和我都没听说过。幸运的是,1991年我们和彼得在亚利桑那州参加一次会议,他向我们谈到了这篇几乎被忘记的文章。在这篇文章中他还提出了解决捆绑问题的相关发放观点。这些年来斯蒂芬·格罗斯伯格、安东尼奥·达马西欧、西蒙,厄尔曼等人对这些回传通路的功能提出了类似的观点。
①这些神经元产生的轴突脉冲并不完全很规则,但时间间隔并不随机;相反地,它们倾向于在一个时刻产生一短簇几个脉冲,而不同簇之间具有较长的间隔,并只有极少的脉冲,甚至没有脉冲。
①如果它们仅仅是突触前的——它们并不依赖于突触后侧发生的一切——它们就不可能像冯·德·马尔斯博格所要求的那样是赫布型的。是否存在赫布型的瞬间改变 尚在研究中。非赫布型的瞬间改变尚在研究中。非赫布尔型的瞬间变化则长时期被理论家所忽略。
①他们也使用2… 脱氧葡萄糖技术,显示与前额皮层连接的区域,诸如海马结构,后顶皮层,以及丘脑的中背核,在这样的任务时活动更加剧烈。
②遗憾的是,这些神经元的发放方式并不能证明回响回路的存在。
'英'弗兰西斯。克里克《惊人的假说》
第十七章 振荡和处理单元
“预言是一件困难的事情,特别是如果它涉及未来的话。”
到此为止我很少谈及可能解决捆绑问题的方法。一个物体(或事件)的不同特征在脑中对应于不同的神经元发放。捆绑问题即如何将这些神经元捆绑在一起。如果在一个感知时刻察觉到不止一个物体,这个问题就显得尤为突出。捆绑的重要性在于它可能至少对某些类型的觉知是必需的。在第十四章曾提到捆绑可能通过有关的神经元的相关发放来实现。一种非常简单的相关发放形式是所有牵涉到的神经元同时以一种节律形式发放(虽然节律对相关而言并非本质)。图57是一个理想化的例子,它显示了神经元每100毫秒有一簇发放,频率约为10赫兹。频率在此附近的节律称为“α节律”。在从头皮记录到的脑波(即脑电波图,EEG)是相当杂乱无章的信号,从中可以探测到这种节律以及其他节律。是否有实验证据表明由神经元组成的群体中存在相关发放呢?
一段时期以来人们已经知道,嗅觉系统中出现了具有振荡形式的相关发放,但直到最近才在视觉皮层中清楚地观察到这种振荡。最令人振奋的结果来自德国的两个研究小组。法兰克福的沃尔夫·辛格(Wolf Singer)、查尔斯·格雷(Charles Gray)和同事们在猫的视皮层观察到了振荡现象。这些振荡在35至75赫兹范围内,常称作“γ振荡”,或不那么精确地称作“40赫兹振荡”。马尔堡的莱因哈德·艾克霍恩(Reinhard Eckhom)和他的同事们独立地观察到了这种振荡。他们使用了一种用于探测“场电位”的电极,能够特别清楚地观察到这种现象。大致说来,场电位所显示的是电极附近的一群神经元的持续变化着的平均活动,它很像是在鸡尾酒会上在一大群人中听到的叽叽喳喳的谈话声。
这些实验比较新,而更新的实验结果仍不断出现,在这里,我仅给出一个非常简单的描述。
正如前面已经叙述过的,当视野内出现适当的刺激时,视皮层的一些神经元会变得活跃起来,并以一定的节律形式发放。在它们附近的平均的局部电活动(场电位)常表现为在40赫兹范围内的振荡。这种神经元发出的脉冲并不随机出现,而是和局域的振荡“合拍的”(见图60)。一个神经元会合拍地发放由两、三个脉冲形成的短簇,有时它也可能根本不发放;但当它发放时,经常是与它的一些神经元“同伴”近似同步的。这些振荡并不很规则。它们的波形更像一个随手画出的粗糙的波,而不像具有恒定频率的非常规则的数学上的波。
辛格和同事们经常发现,当使用两个离得不太远的电极作记录时,如果其中一个电极附近的神经元发放,它们趋向于与另一个电极附近的神经元的发放同步,甚至当两个电极分隔达7毫米远,场电位还可能具有同位相振荡。不过这种情况更多出现在使它们兴奋的运动刺激是属于同一个物体而不是两个物体的时候。只是目前支持最后一个陈述的实验证据还相当少。另外有实验表明,运动光棒能在第一视区和第二视区的相应位置引起同位相的节律发放,这正说明同步可以出现在不同皮层区域的神经元之间。此外也有实验表明同步可以出现在大脑两半球皮层之间。
德国的这两个研究小组都认为,这些40 赫兹振荡可能是脑对捆绑问题的解答。他们提出,标志同一个物体所有不同属性(形状、颜色、运动等)的神经元通过同步发放将这些属性捆绑到一起。科赫和我将这一观点更推广了一步,认为这种与y振荡(在35至75赫兹范围内)合拍(或在此附近)的同步发放可能是视觉觉知的神经关联。这种行为将是其他理论家提出的相关发放的一个特殊情况。
我们还认为,注意机制的主要功能可能是选择一个被注意的物体,然后帮助把所有神经元同步结合起来,这些神经元对应于脑对这部分视觉输入的最佳解释。我们猜测,丘脑是“注意的器官”,它的某些部分控制注意的“探照灯”在视野中从一个显著目标跳向另一个。
这些开创性的实验是猫被轻度麻醉时进行的,在猫被非常深度地麻醉(使用巴比妥盐)的情况下没有观察到振荡,但此时神经元的活动性无论怎样都极度降低了,因而这一结果本身并未提供很多信息。最近的实验是在清醒的猫上进行的(查尔斯·格雷在同我的私人通信中提到此事)。这里也存在 40 赫兹的振荡,因而振荡并不是麻醉引起的伪迹。一些新的实验使用了轻度麻醉的猴,在皮层第六区的也发现了振荡。在清醒的猴子皮层MT区的实验表明,使用运动棒作为视觉输入时能观察到振荡,而当呈现伪随机运动的点组成的图案时则不然。目前尚不能解释这种行为上的差异。这更像是振荡参与了图形/背景的鉴别,而不是视觉觉知。艾伯哈德·菲尔兹(Eberhard Fetz)和同事们在清醒的猴子的运动/躯体感觉皮层的实验中也清楚地观察到了振荡,特别是当猴子完成一项需要注意的复杂的操作任务的时候。
观察到的振荡通常是相当短暂的。它们持续的时间常常依赖于所用的视觉信号呈现的长短。正如一些理论预测的那样,不同位置的神经元集团间的相关振荡仅持续几百毫秒。总的来说,很难让人们相信外部世界在我们的脑中留下的生动逼真的景象完全依赖于如此杂乱、难以观察到的神经活动。
现在你或许会感到迷惑,就像警察在侦破一个困难的谋杀案的初期一样。这里线索很多,但没有哪个能令人信服地指出这个谜团的可能的解答。这就是公众最难以体会的那一类警察工作——沿着众多相当弱的线索进行系统的、费力的追踪。对于视觉觉知方面的科学探索也是如此,我们都想知道答案,但若不仔细地检查不同的“痕迹”,我们就不可能找到答案。可能有许多线索最终被证明是误导甚至完全是错误的。
从所有这些考虑当中我们可以知道,视觉觉知可能有若干种形式;推而广之,一般说来意识甚至可能有更多种形式。我们能否找到某种方法把视觉觉知的这些不同形式同灵长类动物视觉系统的结构和行为联系起来呢?
回想一下我所描述的视觉处理有三个可能阶段:一个阶段非常短暂,大致对应于马尔的要素图;一个则更为持久和生动,大致相应于他的2.5维图和杰肯道夫的中间层次;还有一个三维的以物体为中心的过程,它并不对应于我们所真实看到的东西,而是对我们所看到的物体的某些推测。我生动地看到一个特定物体的轮廓和可视表面,这些表明它是茶杯,并具有所推断出的三维形状。通常看这个词包括这么两种用法。如果我说“你看见那边的那个杯子了吗?”,我在两种意义上使用了看这个词。我可能仅仅是指杯子呈现在我面前的可视表面,但也可能指所推断的整个杯子的三维形状。注意2.5维图和3维模型是一类问题的两种推断,即它们都具有对这个视觉输入的解释,并且都可能是错的。我们对单词的日常用法可能并不精确地描述脑的真实行为。
有一种观点认为视觉处理的每个层次都有某个丘脑区域与之对应,(1)我称之为处理假设。从同一个丘脑核团接受输入的皮层区之间有何共同之处?这个关键问题人们很少提及。
我们都知道在灵长类视觉系统中侧膝体(丘脑的一部分)主要与V1 区有关联。灵长类丘脑有一个很大的部分称为“丘脑后节结”,丘脑的其他视觉区都位于这里(见第十五章)。它具有大量不同的亚区,其中一些亚区可能由若干更小的小区域构成。是否每一个区域都与视觉处理的某一个阶段相关呢?这有两种可能性。这些亚区(其中三个是主要的,即前部、侧部和中部丘脑后节结)可能各与戴维·马尔理论中的一个阶段(即要素图、2。 5维图和三维模型)或某些类似的东西